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Abstract 

Homometric structures are non-congruent structures 
having identical X-ray intensity distributions. It has 
so far been assumed that such structures, while 
theoretically interesting, would not be realized in 
practice. Homometrism in close-packed structures is 
shown to be a realistic possibility. Some general rules 
applicable to homometric pairs are presented; it is 
shown that an infinite number of them can be derived 
from one-dimensional homometric pairs. An exhaus- 
tive search of close-packed structures with periods of 
up to 26 reveals that the smallest period of a 
homometric pair is 15 and that their number increases 
rapidly with the period. Homometrism in polytypic 
structures is further discussed. 

Introduction 

The term 'homometric pair'  was introduced by Patter- 
son (1939, 1944) to denote two non-congruent struc- 
tures having the same set of distances r i - r j  (i , j  = 
1 , . . . ,  N),  where N is the number of atoms in the 
unit cell and ri is the coordinate vector of the ith 
atom. As X-ray intensities depend on the distance 
ri - r j  and not on the individual r{s, the two members 
of a homometric pair will have the same set of 
intensities even though they are not congruent struc- 
tures. Two structures are considered to be congruent 
if they can be brought into coincidence by a combina- 
tion of translation, rotation and reflection operations. 
Patterson (1944) discusses in some detail the charac- 
teristics of homometric structures consisting of one 
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type of atom in one, two and three dimensions and 
gives a large number of examples of such structures. 
Patterson's work made it clear that the information 
included in X-ray intensity sets is not sufficient in all 
cases to determine a structure uniquely. As a con- 
sequence, X-ray structure determination must be fol- 
lowed by an examination of possible homometric 
structures and, if found, other methods must be util- 
ized for a unique structure determination. 

In the years following Patterson's publication, the 
importance of the possible ambiguities associated 
with X-ray structure determination was played down. 
Lipson & Cochran (1966) quote Robertson's con- 
clusion that the chance of finding homometric pairs 
is small and, even if discovered, it would be unlikely 
that both would present structures that are chemically 
possible. Stout & Jensen (1968) referring to homo- 
metric sets state: 'Although of theoretical interest, 
these are exceedingly unlikely to appear in practice 
and do not pose a real difficulty'. 

In their discussion of homometric pairs in close- 
packed structures, Jain & Trigunayat (1977) point out 
that, in structures based on the closest packing of 
spheres where each sphere is replaced by more than 
one atom, two identical stacking sequences may under 
certain conditions constitute a homometric pair. This 
type of homometrism cannot exist in close-packed 
structures of only one kind of atom. 

In the above case of homometrism, the two mem- 
bers of the pair are simply related to one another and 
both have the same stacking sequence of layers, 
a property important for many investigations in 

O 1990 International Union of Crystallography 



134 HOMOMETRISM IN CLOSE-PACKED STRUCTURES 

close-packed structures. It turns out that a much more 
bothersome case of homometrism can take place in 
close-packed structures where structures with two 
different stacking sequences, which are not simply 
related, are found to be homometric even when they 
consist of one kind of atom. This type of 
homometrism is a property of the closest packing of 
spheres in three dimensions. 

The closest packing of spheres: characterization and 
notations 

A detailed discussion of the symmetry and notations 
of close-packed structures is given by Patterson & 
Kaspar (1959). We shall here present and expand 
those aspects which are directly relevant to this manu- 
script. 

A three-dimensional closest packing of spheres 
consists of planar layers of spheres arranged in 
hexagonal arrays, the layers are stacked one on top 
of another with an interlayer spacing of Co. In a 
hexagonal coordinate system with the unit vectors at, 
a2 and Co, the position of each layer with respect to 
its neighboring one is given by either c0+ ( a l - a 2 ) / 3  
or Co- (a~-a2) /3 .  In the first case the layer is said to 
follow its preceding one in a cyclic order and in the 
second case in an anti-cyclic order. 

In the classical notation, an arbitrary layer in the 
stacking sequence is denoted as an 'A' layer, a layer 
following it in a cyclic order as a 'B '  layer and one 
that follows in an anti-cyclic order is denoted a ' C '  
layer. For example, in the stacking A B C A B . . .  all 
layers are stacked in a cyclic order and in B A C B A . . .  
all are in an anti-cyclic order. 

While there are three possible layer positions, A, 
B and C, there are only two possible relative positions 
of a layer in relation to its preceding one: cyclic and 
anti-cyclic. H/igg (1943) denotes them respectively by 
+ and - so that a stacking sequence is specified 
by the sequence of relative layer positions, 
e.g. - + + + - - - + + . . .  denotes the sequence 
B A B C A C B A B C  . . . .  

A notation introduced by Pauling (1945) is based 
on the relation of a layer's two nearest neighbors; 
they can be either of the same type, such as for B in 
ABA,  or of different types, as for B in ABC.  The two 
nearest neighbors are of the same type for a hexagonal 
or 'h '  layer and of different types for a cubic 'c '  layer. 
A stacking sequence can thus be represented as a 
sequence of h and c, e.g. hcchcch. . ,  for the sequence 
given above. 

A concise representation of both H~igg's and Paul- 
ing's notations was introduced by Zhdanov (1945). 
A stacking sequence is given by a sequence of num- 
bers: in terms of H/igg's notation each number rep- 
resents the number of + 's  or - ' s  in a consecutive 
sequence of these symbols, while in terms of Pauling's 

notation each number represents the distance (in 
units of Co) of an h layer to the following h 
layer. For example, . . . 2 3 . . .  represents the two 
identical sequences . . . ( - ) + + - - - ( + ) . . .  and 
. . .  hchcc (h ) . . . ;  the number of layers represented by 
a group of Zhdanov elements is equal to the sum of 
the elements. The Zhdanov notation of close-packed 
structures is the most convenient notation for many 
applications; while the notation is not confined to 
periodic structures we shall use it here to represent 
only such structures. The number of elements in the 
Zhdanov symbol of a periodic stacking sequence must 
be an even number equal to the number of hexagonal . 
layers in the period of the structure. The basic period 
of the Zhdanov elements is not necessarily equal to 
that of the unit cell (as represented by the A B C  
sequence). The two periods are equal only for non- 
rhombohedral structures whereby the basic period of 
the Zhdanov elements of a rhombohedral structure 
is equal to 1/3 that of the unit-cell period. For 
example, the structure [ A B C A C A B C B C A B [ A B . . .  is 
a rhombohedral structure with a period and thus a 
unit cell of 12 layers; its Zhdanov symbol is 
3 1 3 1 3 1 . . .  with a period of 4. In order to maintain 
uniformity we shall henceforth refer to the period M 
of a structure as that of the basic period of its Zhdanov 
symbol and not to the true period of its unit cell; the 
structure in the above example will therefore be 
denoted as 3 1 and not the commonly accepted form 
(3 1)3. 

The elements of the Zhdanov symbol can be 
divided into two groups: elements in the odd positions 
and those in the even positions. Each group represents 
layers stacked with the same type of transition. The 
elements in the odd and even positions will represent 
layers with cyclic and anti-cyclic transitions, respec- 
tively; reversing the cyclicity of these two groups 
would give a congruent structure. The sums of the 
elements in the odd and even positions will be respec- 
tively denoted by I and J, which are the numbers 
of + and - symbols in H~igg's notation; clearly 
I+J=M. 

In all notations discussed so far there is no unique 
representation of a set of congruent structures. There 
are a number of ways in which such a unique rep- 
resentation can be introduced, the one which we shall 
adopt hcrc was found to bc convenient for many 
applications. 

The first layer in the notation of a structure will be 
selected to represent a hexagonal layer (the cubic 
structure ABCABC... is the only exception); this 
layer will be denoted as an 'A' layer, the sccond layer 
will be selected as a 'B' layer. With these two require- 
ments, the H~igg notation will always start with a 
group of +'s and end with a group of -'s, the elements 
of the Zhdanov symbol in the odd and even positions 
will respectively represent layers in cyclic and anti- 
cyclic order. We shall further require that I- J. 
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While the above agreement reduces the number of 
possible notations for a set of congruent structures it 
is still not unique. For example, the structure 4 3 2 1 
can also be represented as 4 1 2 3, 2 1 4 3 and 2 3 4 1. 
In order to select a unique representation, we shall 
view the elements of a Zhdanov symbol as the digits 
of a base M number. This number is defined as the 
'value' of the Zhdanov symbol; the values of the 
above symbols for which M = 10 are therefore the 
numbers (base 10) 4321, 4123, 2143 and 2341. The 
Zhdanov symbol with the highest value is selected to 
represent the set of congruent structures. As examples 
let us first consider the set of congruent structures 
5 6 1 2 3 1 ,  1 6 5 1 3 2 , 3 1 5 6 1 2  etc. For this set, I =  
J = 9 and the representative symbol will be 6 5 1 3 2 1. 
For the set 5 6 1 1 3 1, 1 6 5 1 3 1,3 1 5 6 1 1, etc., I =9, 
J = 8. As I has to be larger than J the representative 
symbol will b e 5 6 1 1 3 1  ( n o t 6 5 1 3 1 1 ) .  

Homometric pairs in close-packed structures 

Patterson (1944) discusses in detail periodic distribu- 
tions of points on a line and states a number of 
theorems related to such distributions. For a set P of 
p points on a period divided into M equal parts, 
Patterson defines the complementary set Pc as the set 
of the M - p  points which are not occupied by mem- 
bers of P. A theorem which was later proved by 
Buerger (1977) states that if P and P'  are homometric 
then Pc and P~ will also be homometric. 

Let us now associate an atom A with an f factor 
fA with each of the p points of the set P and an atom 
B with an f factor fB with each of the points of Pc. 
The absolute value of the structure factor can then 
be written as 

IFhk.~I2= fAfASAA + f~fBS~8 + fAf~SAB, 

where 

SAA ---- ~ ~ exp 2~'i h. (r~ - r,) 
A A  

San = ~  ~ exp 27ri h.(rs - r , )  
B B 

Sas = ~  ~ exp 27ri h.(rs - r , ) ,  
A B 

leads to the conclusion that two sets including two 
types of atoms will be homometric if a subset of one 
structure including one type of atom is homometric 
to the subset of the other set including the same atoms. 

We can now replace the atoms A and B by two 
different three-dimensional molecules where the f ' s  
will now denote the molecular structure factors - the 
above conclusion will still hold. Applying the con- 
clusion to close-packed structures we can start with 
a one-dimensional homometric pair, say 5 4 1 2 3 1 
and 4 1 3 5 2 1 (Patterson, 1944); in this example M = 
16 and p = 7. The above notation of the homometric 
pair (no relation to the Zhdanov symbol!) gives con- 
secutively the number of occupied and missing points 
in the arrangement; thus the first arrangement consists 
of five occupied points, four missing, one occupied, 
two missing etc. Now let us assign to each occupied 
point the group of layers ABC and to each unoc- 
cupied point the group ACB. The first arrangement 
will therefore be represented by the ABC sequence 
ABCABCABCABCABC ACBACBACBACB ABC 
ACBACB ABCABCABC ACB, which has the 
Zhdanov symbol 15 12 3 6 9 3 and the other member 
of the homometric pair is 12 3 9 15 6 3. These two 
close-packed structures are non-congruent and 
homometric and indeed have the same set of X-ray 
intensities. 

The two groups of layers substituted for the sets 
P, P'  and Pc, P'c can be selected in an arbitrary way 
as long as both include the same number of layers 
and as long as the first letter of each is different from 
the last letter of both, e.g. ABCAC and ACBAB is a 
permissible pair. The first condition ensures corre- 
spondence to equal distances on the linear arrange- 
ments of points and the second condition ensures 
that no two neighboring layers in the close-packed 
structure will be of the same type. Starting from any 
linear homometric pair, one can create an infinite 
number of close-packed pairs with the two members 
of each pair being either congruent or homometric. 

The method described above of constructing close- 
packed homometric pairs does not exhaust all such 
pairs. Some general properties and examples of other 
forms of homometric pairs in such structures will be 
given in the following section. 

where the (rs - rt) are the vector distances; h = ~. hkbk, 
where the bk are the reciprocal-lattice vectors and h k 
the Miller indices. In SAA, the summation is over the 
A atoms, in SBB over the B atoms and SAS includes 
the mixed terms. Clearly, SAA + S~B + SA8 = S, where 
S denotes the sum over all points in the period irres- 
pective of which atom occupies them. Assume now 
that the sets P and P' form a homometric pair, the 
complementary sets Pc and P'c will also form a 
homometric pair and therefore SAA = SPAA and SsB = 
S~s but then we must also have SAS = S),B, which 

Distance-distribution arrays and homometric pairs 

There are three types of distance vectors possible in 
a close-packed structure; they will be denoted by 

dk - - - -  kco, d~ = kc0+ ( a l -  a2)/3, 

dk = kco-  ( a l - a 2 ) / 3  ( k = 0 , . . . , M -  1) 

The number of the dk, d~ and dk vectors in a basic 
period will be denoted respectively by Nk, N~ and 
Nk.  
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Some simple relations hold between the Nk'S and 
the Zhdanov elements of a given structure: 

Nk + N-~ + N k =  M; 

No = M; N~-= N o = 0 ;  

NI = 0; N~ = I; N~- = J; 

N2= Mh, 

where Mh is the number of hexagonal layers in the 
period, which is also the number of Zhdanov elements 
in the basis period; 

N ~ = M - I - M h / 2 ;  N E = M - J - M h / 2 ;  

N3= M - 2 M h  + n(1), 

where n(1) is the number of l 's in the Zhdanov 
symbol. The following relations hold for non-rhom- 
bohedral structures: 

N(M-1) = N(-M-1) = 0; N~-M-I) = M; 

Nk is a symmetric array, namely Nk = N(M-k); 

N-~ = N-(M-k ) . 

For rhombohedral structures with I - J  = l(mod 3): 

N~-M-1) = N(M-1) ; N(-M-1) = M; 

N~ + " = N(M-k), N-~ = N(M-k). 

For rhombohedral structures with I - J  = 2(mod 3): 
+ 

N(-M-1) = N(M-I)= 0; N(M-1) = M; 

N ~ =  N~-M-k) ; Nk= N~'~-k). 

It should be stressed that the above relations hold 
only if the convention given in the previous section 
for the presentation of the Zhdanov symbol is 
adopted. 

As a consequence of the above relations, the two 
members of a homometric pair must be of the same 
type: non-rhombohedral, rhombohedral with I -  J = 
1 (mod 3) or rhombohedral with I - J  = 2 (mod 3). 
They also have to have the same values of M, Mh, I, 
J and n(1). 

An exhaustive search for homometric pairs in close- 
packed structures with M <- 26 was facilitated by these 
restrictive conditions and by the interrelations given 
above. It was found that no homometric pairs exist 
with M < 15. 

For M = 1 5  there are two homometric pairs: 
3 2 3 1 2 2 1 1 ,  3 2 2 1 3 1 1 2  and 3 1 2 2 1 1 2 1 1 1 ,  
3 1 2 1 1 1 2 2 1 1 .  

There is one pair with M = 1 6 :  3 1 2 3 1 1 2 1 1 1 ,  
3 1 2 1 1 1 2 3 1 1 .  

There are three pairs with M = 17:3 123 1 1 2 2 1 1 ,  
3 1 2 2 1 1 2 3 1 1 ;  3 2 3 1 2 2 1 1 1 1 ,  3 2 2 1 3 1 1 1 1 2  
and 3 1 2 4 1  121 11, 3 121 1 1 2 4 1 1 .  

Table 1 gives the number of homometric pairs 
found in the range 15 <- M <- 26 and the total number 
of different structures for each M. 

Table 1. Homometric pairs in close-packed structures 
with periods of  15 to 26 

Number Number 
Pedod of pairs of structures 

15 2 607 
16 1 1115 
17 3 2055 
18 8 3886 
19 9 7154 
20 22 13 631 
21 46 25472 
22 58 48 671 
23 51 92 204 
24 131 176 862 
25 107 337 590 
26 230 649 342 

Table 2. All homometric pairs found in close-packed 
structures with M = 48, Mh = 6, I = 27, J = 21, n(1) = 0 

(1) 1 2 1 5 3 3 1 2 3  (2) 1 8 6 6 1 2 3 3  
2 1 1 2 3 3 3 6  1 5 1 2 3 6 9 3  

1 2 3 9 1 5 6 3  
(3) 2 1 9 3 6 3 6  (4) 1 8 1 1 6 2 3 8  

1 8 1 2 3 6 6 3  1 5 1 3 9 6 3 2  
(5) 1 8 1 0 6 7 3 4  (6) 1 8 1 0 6 4 3 7  

1 2 1 4 6 3 9 4  1 2 1 4 9 3 6 4  
(7) 1 8 9 6 3 3 9  (8) 1 8 1 2 3 3 6 6  

1 5 1 2 3 3 9 6  1 2 1 5 9 3 6 3  
(9) 1 5 9 9 6 3 6  (10) 1 5 9 6 9 6 3  

1 2 1 2 9 3 6 6  1 2 1 2 6 6 9 3  

There exists the possibility that a structure with a 
period M will be homometric to a structure M'  where 
M is divisible by M'; these structures were therefore 
included in the search and are counted in Table 1; 
such homometric pairs were not found in our search. 

None of the pairs found in the above range of M 
can be derived from a linear set of points by the 
method described in the previous section; such pairs 
are however found for larger values of M. As an 
example we list in Table 2 all close-packed 
homometric pairs in the subset M = 48, Mh = 6, I = 
27, J = 2 1 ,  n(1) =0. 

Group 2 is an example of a homometric triplet 
which can be derived from a linear triplet; the pairs 
1, 3, 7, 8, 9 and 10 can be derived from linear 
homometric pairs while 4, 5 and 6 cannot. 

While the number of homometric pairs increases 
rapidly with M, it seems that the density of these 
pairs decreases. The distribution of the pairs among 
the various values of I, J and n(1) is highly non- 
uniform with no clear pattern. 

Structures based on the closest packing of spheres 

ZnS, SiC and Cdla are examples of structures based 
on the closest packing of spheres, where each sphere 
is replaced by the same group of atoms with identical 
spatial orientations. The various structures of a given 
material are known as polytypes and are quite com- 
mon, hundreds of them have already been identified, 
their periods can reach values of up to tens of layers. 
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The former conclusions related to close-packed 
homometric structures apply directly to such poly- 
types. 

The Zhdanov symbol of a close-packed structure 
may, in some cases, depending on the symmetry of 
the structure, define a direction along the c axis, e.g. 
the structure 1 2 3 4 has the opposite direction to 
43 2 1; on the other hand, 1 2, 1 2 3 2 or 1 2 3 43 2 do 
not define such a direction. The group of atoms 
replacing each sphere may also define a direction 
along the c axis, e.g. the Si and C atoms in SiC can 
have two opposite orientations in each of the closest- 
packing-of-spheres configurations while the two Si 
atoms replacing a sphere in a silicon crystal do not 
define a direction along the c axis of the crystal. In 
those polytypes where both orientations, structural 
and molecular, can be defined, inverting one direction 
leads to a structure which is non-congruent to the 
original but has the same set of X-ray intensities. A 
pair of homometric structures thus exists, as noted 
by Jain & Trigunayat (1977). This type of 
homometrism is superimposed on the structural 
homometrism of the closest packing of spheres. 

There is, for example, a homometric quadruplet 
of ZnS polytypes derived from the close-packed 
homometric pair 18 10 6 7 3 4, 12 14 6 3 9 4 mentioned 
before, but there can be only a homometric pair of 
such silicon polytypes. 

Discussion 

It was stated (Lipson & Cochran, 1966) that if a 
homometric pair of structures is found it would be 
unlikely that both members of the pair would rep- 
resent structures that are chemically possible. The 
various structures of a compound based on the closest 
packing of spheres are all chemically identical and 
thus the members of homometric pairs of these com- 
pounds are chemically indistinguishable. It seems that 
other properties will be similar for both members of 
a pair: the free ~ e r g y  for example depends mostly 
on the distribution of the distance vectors which is 
common to both members. The energy gap and bire- 
fringence depend on N2/M, common to both pair 
members (Brafman & Steinberger, 1966) and there- 
fore cannot be used to discriminate between them. A 
way to identify a member of a homometric pair can 
be envisioned if we notice that the products of mar- 
tensitic transformations of the two members of a pair 
will most probably be non-congruent and not 
homometric. 

As a working example let us assume that a ZnS 
polytype is identified as either one of the two members 
of the homometric pair 7 4 2 1 3 1 2 4 ,  5 5 5 1 2 3 2 1 .  
Martensitic transformations in ZnS in the vicinity of 
room temperature take place in such a direction as 
to eliminate neighboring hexagonally stacked layers 
(Mardix, 1986a). The product of a martensitic trans- 

formations in the above structures will therefore be 
either 7 4 6 1 2 4 or 7 4 9 4 for the first member of the 
pair and either 8 5 5 1 23 or 8 5 83 for the second 
member. The two possible products of the first mem- 
ber are neither congruent nor homometric to either 
of the products of the second member. Identification 
of the transformed structure by regular X-ray methods 
will unequivocally determine the correct structure of 
the parent polytype. 

The task of structure identification of close-packed 
structures with large unit cells can be quite compli- 
cated and a number of techniques have been 
employed to deal with it (Mardix, 1986b). The main 
methods are: 

(a) Trial and error (Verma & Krishna, 1966). A 
structure with a 'good' fit between its experimental 
intensities and the calculated ones for a specific stack- 
ing order is selected as the identified structure. The 
method is not expected to discover the existence of 
homometric pairs. Most SiC and Cdl2 polytypes were 
identified by this method. 

(b) The direct method (Tokonami & Hosoya, 1965; 
Dornberger-Schiff & Farkas-Jahnke, 1970). The set 
of experimental X-ray intensities is utilized to identify 
the distance-distribution arrays from which the cor- 
rect structure is found. This method can detect 
homometric structures when they are found. 
However, owing to experimental inaccuracies in 
intensity measurements, the method is not effective 
for practical application. Only a few reported poly- 
types were identified by this method. 

(c) The elimination method (Mardix, Kalman & 
Steinberger, 1970). The parameters M, Mh, I, J and 
n(1) are identified and all structures with this set of 
parameters are checked for possible fit of their calcu- 
lated intensity distribution to the experimental one. 
Homometric structures have the above as common 
parameters and will therefore be detected. Almost all 
of the reported ZnS polytypes (Mardix, 1986a) were 
identified by this method. 

No ZnS homometric pairs have been so far found. 
It has already been mentioned that neighboring 
hexagonal layers constitute an unstable configuration 
in ZnS structures; as a result it is rare to find a ZnS 
polytype with n ( 1 ) ~ 0 .  However, for most 
homometric pairs with small periods, n ( 1 ) ~  0. As a 
matter of fact, there are no homometric pairs with 
periods smaller than 26 for which n (1) = 0 and there 
are only two such pairs with a period of 26 out of 
230 pairs. There are only about 30 ZnS identified 
polytypes with periods larger than 26 (Mardix, 
1986a). As there has so far been no special effort to 
discover such homometric pairs, it is not surprising 
that none have been found. 

It should be noted that once a structure is identified 
the subset within which a homometric pair can be 
found becomes known. It is therefore suggested that 
structure identification by the trial-and-error method 
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should be followed by a full search for homometric 
pairs within the appropriate subset. 
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Abstract 

A method of calculating the expected bond valences 
from the connectivity matrix of complex crystals is 
described. The method is exact (does not require 
iteration) and is suitable for implementation on a 
microcomputer. 

Introduction 

A major advance in inorganic solid-state chemistry 
has been the development of the bond valence method 
for predicting and interpreting bond lengths in crys- 
tals. In this method valences are assigned to each 
bond in the crystal and then, from known correlations 
(Brown & Altermatt, 1985; Brese & O'Keeffe, 1990) 
between bond valence and bond lengths, the expected 
bond lengths can be calculated. Alternatively, 
observed bond lengths can be interpreted in terms of 
valences. The method, and its historical development, 
is now well documented (e.g. Brown, 1981; O'Keeffe, 
1989) and its advantages over other methods (such 
as using sums of radii) for predicting bond lengths 
in crystals are well established. This paper is con- 
cerned with an algorithm for implementing the 
method for predicting bond lengths in complex 
crystals. 

The discussion here is restricted to crystals in which 
there are bonds only between 'cations' and 'anions' 
(named as such merely for convenience). Let there 
be m crystallographically distinct cations and n crys- 

tallographically distinct anions. Then we recognize 
the possibility of there being as many as m n  kinds of 
bond, each of which may, in principle have a different 
valence. 

The sum of the individual valences (v) of the bonds 
from each atom must be equal to the total atom 
valence (V), so there will be m + n -  1 independent 
sums of the sort 

Y. v,j= E. (1) 
J 

However, if we had mn bonds there would be 
m n -  m - n + 1 = ( m - 1)(n - 1) degrees of freedom 
remaining. It may be seen then that, for m, n > 1, in 
general bond valence sums do not suffice to determine 
individual bond valences. 

A solution to this problem was proposed by Brown 
(1977) who suggested that individual valences should 
be made as nearly as possible equal to each other, 
subject to the bond valence constraints. Brown 
developed an iterative method to implement this idea 
and showed that bond lengths predicted were gen- 
erally in excellent agreement with those observed. 
Brown (1987) also remarked that it should be 
profitable to pursue the apparent similarity (Mackay 
& Finney, 1973) of a bond valence network to elec- 
trical circuits to which Kirchhoff's laws may be 
apr,lied. This analogy is somewhat misleading 
(O'Keeffe, 1989); nevertheless the idea is very fruitful 
and leads to an algorithm for direct computation of 
valences in complex crystals which overcomes the 
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